AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection
نویسندگان
چکیده
We propose AffordanceNet, a new deep learning approach to simultaneously detect multiple objects and their affordances from RGB images. Our AffordanceNet has two branches: an object detection branch to localize and classify the object, and an affordance detection branch to assign each pixel in the object to its most probable affordance label. The proposed framework employs three key components for effectively handling the multiclass problem in the affordance mask: a sequence of deconvolutional layers, a robust resizing strategy, and a multi-task loss function. The experimental results on the public datasets show that our AffordanceNet outperforms recent state-of-the-art methods by a fair margin, while its end-to-end architecture allows the inference at the speed of 150ms per image. This makes our AffordanceNet is well suitable for real-time robotic applications. Furthermore, we demonstrate the effectiveness of AffordanceNet in different testing environments and in real robotic applications. The source code is available at https://github.com/nqanh/affordance-net.
منابع مشابه
Iranian EFL Learners’ Perception of the Efficacy and Affordance of Activity Theory-based Computer Assisted Language Learning in Writing Achievement
Second language writing instruction has been greatly influenced by the growing importance of technology and the recent shift of paradigm from a cognitive to a social orientation in second language acquisition (Lantolf & Thorne, 2006). Therefore, the applications of computer assisted language learning and activity theory have been suggested as a promising framework for writing studies. The prese...
متن کاملDeep Regionlets for Object Detection
In this paper, we propose a novel object detection framework named "Deep Regionlets" by establishing a bridge between deep neural networks and conventional detection schema for accurate generic object detection. Motivated by the advantages of regionlets on modeling object deformation and multiple aspect ratios, we incorporate regionlet into an end-to-end trainable deep learning framework. The d...
متن کاملGroup-wise Deep Co-saliency Detection
In this paper, we propose an end-to-end group-wise deep co-saliency detection approach to address the co-salient object discovery problem based on the fully convolutional network (FCN) with group input and group output. The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network...
متن کاملDeep-6DPose: Recovering 6D Object Pose from a Single RGB Image
Detecting objects and their 6D poses from only RGB images is an important task for many robotic applications. While deep learning methods have made significant progress in visual object detection and segmentation, the object pose estimation task is still challenging. In this paper, we introduce an end-toend deep learning framework, named Deep-6DPose, that jointly detects, segments, and most imp...
متن کاملEnd-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images
Airplane detection in remote sensing images remains a challenging problem due to the complexity of backgrounds. In recent years, with the development of deep learning, object detection has also obtained great breakthroughs. For object detection tasks in natural images, such as the PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) VOC (Visual Object Classes) Challenge, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.07326 شماره
صفحات -
تاریخ انتشار 2017